Gold
chemical element
Gold (Au), chemical element, a dense lustrous yellow precious metal of Group 11 (Ib), Period 6, of the periodic table of the elements. Gold has several qualities that have made it exceptionally valuable throughout history. It is attractive in colour and brightness, durable to the point of virtual indestructibility, highly malleable, and usually found in nature in a comparatively pure form. The history of gold is unequaled by that of any other metal because of its perceived value from earliest times.
atomic number | 79 |
---|---|
atomic weight | 196.96657 |
melting point | 1,063 °C (1,945 °F) |
boiling point | 2,966 °C (5,371 °F) |
specific gravity | 19.3 at 20 °C (68 °F) |
oxidation states | +1, +3 |
electron configuration | [Xe]4f145d106s1 |
Properties, occurrences, and uses
Gold is one of the densest of all metals. It is a good conductor of heat and electricity. It is also soft and the most malleable and ductile of the elements; an ounce (31.1 grams; gold is weighed in troy ounces) can be beaten out to 187 square feet (about 17 square metres) in extremely thin sheets called gold leaf.
Because gold is visually pleasing and workable and does not tarnish or corrode, it was one of the first metals to attract human attention. Examples of elaborate gold workmanship, many in nearly perfect condition, survive from ancient Egyptian, Minoan, Assyrian, and Etruscan artisans, and gold continues to be a highly favoured material out of which to craft jewelry and other decorative objects. (see metalwork; goldwork.)
Because of its unique qualities, gold has been the one material that is universally accepted in exchange for goods and services. In the form of coins or bullion, gold has occasionally played a major role as a high-denomination currency, although silver was generally the standard medium of payments in the world’s trading systems. Gold began to serve as backing for paper-currency systems when they became widespread in the 19th century, and from the 1870s until World War I the gold standard was the basis for the world’s currencies. Although gold’s official role in the international monetary system had come to an end by the 1970s, the metal remains a highly regarded reserve asset, and approximately 45 percent of all the world’s gold is held by governments and central banks for this purpose. Gold is still accepted by all nations as a medium of international payment. (See also money.)
Gold is widespread in low concentrations in all igneous rocks. Its abundance in Earth’s crust is estimated at about 0.005 part per million. It occurs mostly in the native state, remaining chemically uncombined except with tellurium, selenium, and bismuth. The element’s only naturally occurring isotope is gold-197. Gold often occurs in association with copper and lead deposits, and, though the quantity present is often extremely small, it is readily recovered as a by-product in the refining of those base metals. Large masses of gold-bearing rock rich enough to be called ores are unusual. Two types of deposits containing significant amounts of gold are known: hydrothermal veins, where it is associated with quartz and pyrite (fool’s gold); and placer deposits, both consolidated and unconsolidated, that are derived from the weathering of gold-bearing rocks.
Veins enriched in gold form when the gold was carried up from great depths with other minerals, in an aqueous solution, and later precipitated. The gold in rocks usually occurs as invisible disseminated grains, more rarely as flakes large enough to be seen, and even more rarely as masses or veinlets. Crystals about 2.5 cm (1 inch) or more across have been found in California. Masses, some on the order of 90 kg (200 pounds), have been reported from Australia. Alluvial deposits of gold found in or along streams were the principal sources of the metal for ancient Egypt and Mesopotamia. Other deposits were found in Lydia (now in Turkey) and the lands of the Aegean and in Persia (Iran), India, China, and other lands. During the Middle Ages the chief sources of gold in Europe were the mines of Saxony and Austria. The era of gold production that followed the Spanish discovery of the Americas in the 1490s was probably the greatest the world had witnessed to that time. The exploitation of mines by slave labour and the looting of palaces, temples, and graves in Central and South America resulted in an unprecedented influx of gold that literally unbalanced the economic structure of Europe. From Christopher Columbus’s discovery of the New World in 1492 to 1600, more than 225,000 kg (8,000,000 ounces) of gold, or 35 percent of world production, came from South America. The New World’s mines—especially those in Colombia—continued into the 17th and 18th centuries to account for 61 and 80 percent, respectively, of world production; 1,350,000 kg (48,000,000 ounces) were mined in the 18th century.
Russia became the world’s leading producer of gold in 1823, and for 14 years it contributed the bulk of the world supply. During the second era of expanding production (1850–75), more gold was produced in the world than in all the years since 1492, primarily because of discoveries in California and Australia. A third marked increase (1890–1915) stemmed from discoveries in Alaska, Yukon Territory (now Yukon), and South Africa. A major factor in the increase of the world’s supply of gold was the introduction in 1890 of the cyanide process for the recovery of gold from low-grade ores and ores containing minute, particle-sized gold. Gold production continued to rise throughout the 20th century, partly because of the improvement in recovery methods and partly because of the continual growth and expansion of South Africa’s gold-mining operations.
In the late 20th century, four countries—South Africa, Russia, the United States, and Australia—accounted for two-thirds of the gold produced annually throughout the world. In the early 21st century, China was the world leader in gold production. During this period, Australia, the United States, Russia, Canada, and South Africa also continued to supply large amounts of the precious metal. Because pure gold is too soft to resist prolonged handling, it is usually alloyed with other metals to increase its hardness for use in jewellery, goldware, or coinage. Most gold used in jewellery is alloyed with silver, copper, and a little zinc to produce various shades of yellow gold or with nickel, copper, and zinc to produce white gold. The colour of these gold alloys goes from yellow to white as the proportion of silver in them increases; more than 70 percent silver results in alloys that are white. Alloys of gold with silver or copper are used to make gold coins and goldware, and alloys with platinum or palladium are also used in jewelry. The content of gold alloys is expressed in 24ths, called karats; a 12-karat gold alloy is 50 percent gold, and 24-karat gold is gold that is more than 99 percent pure.
Because of its high electrical conductivity (71 percent that of copper) and inertness, the largest industrial use of gold is in the electric and electronics industry for plating contacts, terminals, printed circuits, and semiconductor systems. Thin films of gold that reflect up to 98 percent of incident infrared radiation have been employed on satellites to control temperature and on space-suit visors to afford protection. Used in a similar way on the windows of large office buildings, gold reduces the air-conditioning requirement and adds to the beauty. Gold has also long been used for fillings and other repairs to teeth. Like copper, gold has a single s electron outside a completed d shell, but, in spite of the similarity in electronic structures and ionization energies, there are few close resemblances between gold on the one hand and copper on the other.
Compounds
The characteristic oxidation states of gold are +1 (aurous compounds) and +3 (auric compounds). The state +1 is generally quite unstable, and most of the chemistry of gold involves the state +3. Gold is more easily displaced from solution by reduction than any other metal. Even platinum will reduce Au3+ ions to metallic gold.
Among the relatively few gold compounds of practical importance are gold(I) chloride, AuCl; gold(III) chloride, AuCl3; and chlorauric acid, HAuCl4. In the first compound, gold is in the +1 oxidation state, and in the latter two, the +3 state. All three compounds are involved in the electrolytic refining of gold. Potassium cyanoaurate, K[Au(CN)2], is the basis for most gold-plating baths (the solution employed when gold is plated). Several organic compounds of gold have industrial applications. For example, gold mercaptides, which are obtained from sulfurized terpenes, are dissolved in certain organic solutions and used for decorating china and glass articles.
Mercury
chemical element
Mercury (Hg), chemical element, liquid metal of Group 12 (IIb, or zinc group) of the periodic table.
atomic number | 80 |
---|---|
atomic weight | 200.592 |
melting point | −38.83 °C (−37.89 °F) |
boiling point | 356.62 °C (673.91 °F) |
specific gravity | 13.5 at 20 °C (68 °F) |
valence | 1, 2 |
electron configuration | 2-8-18-32-18-2 or (Xe)4f 145d106s2 |
Properties, uses, and occurrence
Mercury was known in Egypt and also probably in the East as early as 1500 BCE. The name mercury originated in 6th-century alchemy, in which the symbol of the planet was used to represent the metal; the chemical symbol Hg derives from the Latin hydrargyrum, “liquid silver.” Although its toxicity was recognized at an early date, its main application was for medical purposes.
Mercury is the only elemental metal that is liquid at room temperature. (Cesium melts at about 28.5 °C [83 °F], gallium at about 30 °C [86 °F], and rubidium at about 39 °C [102 °F].) Mercury is silvery white, slowly tarnishes in moist air, and freezes into a soft solid like tin or lead at −38.83 °C (−37.89 °F). It boils at 356.62 °C (673.91 °F).
It alloys with copper, tin, and zinc to form amalgams, or liquid alloys. An amalgam with silver is used as a filling in dentistry. Mercury does not wet glass or cling to it, and this property, coupled with its rapid and uniform volume expansion throughout its liquid range, made it useful in thermometers. (Mercury thermometers were supplanted by more accurate electronic digital thermometers in the early 21st century.) Barometers and manometers also used its high density and low vapour pressure. However, mercury’s toxicity has led to its replacement in these instruments. Gold and silver dissolve readily in mercury, and in the past this property was used in the extraction of these metals from their ores.
There are relatively few mercury(I) or mercurous compounds. The mercury(I) ion, Hg22+, is diatomic and stable. Mercury(I) chloride, Hg2Cl2 (commonly known as calomel), is probably the most important univalent compound. It was used in antiseptic salves. Mercury(II) chloride, HgCl2 (also called bichloride of mercury or corrosive sublimate), is perhaps the commonest bivalent compound. Although extremely toxic, this odourless, colourless substance has a wide variety of applications. In agriculture it is used as a fungicide, in medicine it was sometimes employed as a topical antiseptic in concentrations of one part per 2,000 parts of water, and in the chemical industry it serves as a catalyst in the manufacture of vinyl chloride and as a starting material in the production of other mercury compounds. Mercury(II) oxide, HgO, provides elemental mercury for the preparation of various organic mercury compounds and certain inorganic mercury salts. This red or yellow crystalline solid is also used as an electrode (mixed with graphite) in zinc-mercuric oxide electric cells and in mercury batteries. Mercury(II) sulfide, HgS, is a black or red crystalline solid used chiefly as a pigment in paints, rubber, and plastics.
The good electrical conductivity of mercury makes it exceptionally useful in sealed electrical switches and relays. An electrical discharge through mercury vapour contained in a fused silica tube or bulb produces a bluish glow rich in ultraviolet light, a phenomenon exploited in ultraviolet, fluorescent, and high-pressure mercury-vapour lamps. Some mercury is used in the preparation of pharmaceuticals and agricultural and industrial fungicides.
In the 20th century the use of mercury in the manufacture of chlorine and sodium hydroxide by electrolysis of brine depended upon the fact that mercury employed as the negative pole, or cathode, dissolves the sodium liberated to form a liquid amalgam. In the early 21st century, however, mercury-cell plants for manufacturing chlorine and sodium hydroxide have mostly been phased out.
Mercury occurs in Earth’s crust on the average of about 0.08 gram (0.003 ounce) per ton of rock. The principal ore is the red sulfide, cinnabar. Native mercury occurs in isolated drops and occasionally in larger fluid masses, usually with cinnabar, near volcanoes or hot springs. Extremely rare natural alloys of mercury have also been found: moschellandsbergite (with silver), potarite (with palladium), and gold amalgam. Over 90 percent of the world’s supply of mercury comes from China; it is often a by-product of gold mining.
Cinnabar is mined in shaft or open-pit operations and refined by flotation. Most of the methods of extraction of mercury rely on the volatility of the metal and the fact that cinnabar is readily decomposed by air or by lime to yield the free metal. Mercury is extracted from cinnabar by roasting it in air, followed by condensation of the mercury vapour. Because of the toxicity of mercury and the threat of rigid pollution control, attention is being directed toward safer methods of extracting mercury. These generally rely on the fact that cinnabar is readily soluble in solutions of sodium hypochlorite or sulfide, from which the mercury can be recovered by precipitation with zinc or aluminium or by electrolysis. Mercury is toxic. Poisoning may result from inhalation of the vapour, ingestion of soluble compounds, or absorption of mercury through the skin.
Natural mercury is a mixture of seven stable isotopes: 196Hg (0.15 percent), 198Hg (9.97 percent), 199Hg (16.87 percent), 200Hg (23.10 percent), 201Hg (13.18 percent), 202Hg (29.86 percent), and 204Hg (6.87 percent). Isotopically pure mercury consisting of only mercury-198 prepared by neutron bombardment of natural gold, gold-197, has been used as a wavelength standard and for other precise work.
Principal compounds
The compounds of mercury are either of +1 or +2 oxidation state. Mercury(II) or mercuric compounds predominate. Mercury does not combine with oxygen to produce mercury(II) oxide, HgO, at a useful rate until heated to the range of 300 to 350 °C (572 to 662 °F). At temperatures of about 400 °C (752 °F) and above, the reaction reverses with the compound decomposing into its elements. Antoine-Laurent Lavoisier and Joseph Priestley used this reaction in their study of oxygen.
There are relatively few mercury(I) or mercurous compounds. The mercury(I) ion, Hg22+, is diatomic and stable. Mercury(I) chloride, Hg2Cl2 (commonly known as calomel), is probably the most important univalent compound. It was used in antiseptic salves. Mercury(II) chloride, HgCl2 (also called bichloride of mercury or corrosive sublimate), is perhaps the commonest bivalent compound. Although extremely toxic, this odourless, colourless substance has a wide variety of applications. In agriculture it is used as a fungicide, in medicine it was sometimes employed as a topical antiseptic in concentrations of one part per 2,000 parts of water, and in the chemical industry it serves as a catalyst in the manufacture of vinyl chloride and as a starting material in the production of other mercury compounds. Mercury(II) oxide, HgO, provides elemental mercury for the preparation of various organic mercury compounds and certain inorganic mercury salts. This red or yellow crystalline solid is also used as an electrode (mixed with graphite) in zinc-mercuric oxide electric cells and in mercury batteries. Mercury(II) sulfide, HgS, is a black or red crystalline solid used chiefly as a pigment in paints, rubber, and plastics.